Valves for a wide temperature range

60

B

40

-20

80

120

Temperature resistant valve solutions

Temperatures and especially high temperatures pose a significant challenge to butterfly valves and can potentially cause damages and malfunctions.

- Increase in torque and impaired tightness
- Decrease in pressure tolerance
- Damage to disc and body protection
- Decrease in corrosion resistance
- Damage to actuator

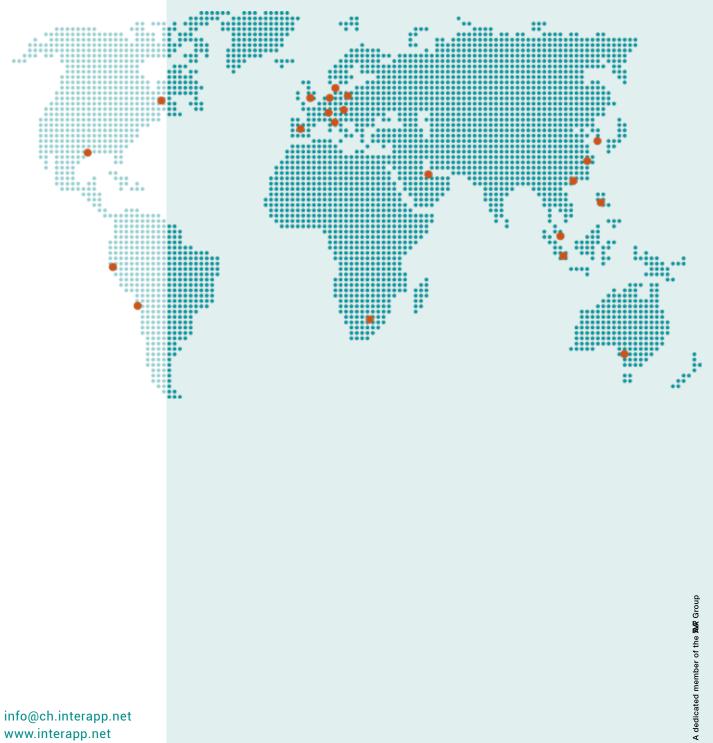
To ensure a long service life and high effectiveness of the butterfly valves, the right choice of material is crucial. InterApp offers a wide range of disc, coating, and liner materials specifically tailored for various temperature applications.

Quick selection

Find the suitable material combination based on your application temperature.

		~~~	10		0	00	40	60	[°C]	100	100		、 -	<b>c</b> 0	100	0.01
ner liners		-60	-40	-20	0	20 	40 	60 	80 I	100	120	14	) 1	60 	180	20
MVQ																
ECO					_											
FPM																
Flucast F	x															
EPDM							_									
EPDM-H	r									-						
EPDM-E1																
Flucast F											_					
Flucast F							_									
NBR									_	-						
Flucast F	N															
CSM																
Flucast F							_									
Flucast	F															
s + backlir	iers															
PTFE + E																
PTFE + F	PM															
PTFE + M	IVQ											-+				
Ultraflon																
Ultraflon										_						
Ultraflon						+				+						
ondition																
ng/overmo	ulding															
Ultralene																
	olyamide 11)															
Halar									_	_						
Polyureth	ane				_											
PEKK																_
PFA over	mouldod														-	
PFA OVE	noulded															
ing																
	bed Epoxy (R), 200 µm															
	powder Epoxy (E), 80 µm						_									_
	ray Epoxy (N) ¹ , 250 μm					-										
	ay Εροχγ (Ν) ¹ , 230 μm															

- Metal discs and body can operate across the entire temperature range.


 The maximum temperature specified is for non-corrosive and non-abrasive media. For information on handling corrosive or abrasive media,

please refer to the corresponding documents.

- To protect actuators, mounting brackets must be used to decrease heat transfer.

3

We are there for you. Anywhere, anytime. As an international company with extensive product and project expertise, we support you with our sales partners and our technical support team in all parts of the world.



www.interapp.net